
Efficient Agent-Based Models for Non-Genomic Evolution

Nachi Gupta
Oxford Univ., Computing Lab

Numerical Analysis Group
Wolfson Building, Parks Road

Oxford, OX1 3QD, UK

nachi@comlab.ox.ac.uk

Adrian Agogino
UC Santa Cruz

NASA Ames Research Center
Mailstop 269-3

Moffett Field, CA 94035, USA

adrian@email.arc.nasa.gov

Kagan Tumer
NASA Ames Research Center

Mailstop 269-4
Moffett Field, CA 94035, USA

ktumer@mail.arc.nasa.gov

ABSTRACT
Modeling dynamical systems composed of aggregations of
primitive proteins is critical to the field of astrobiological
science, which studies early evolutionary structures dealing
with the origins of life. Current theories on the emergence
of early life focus either on RNA-world models [2, 3] or pro-
tein world models [4, 5]. Traditional models from either
model are generally either too slow to converge or too sim-
plified to provide good tools for exploring the trade-offs in
the early stages of the emergence of life. This paper focuses
on protein-world models and discusses how to model protein
aggregations through a utility based multi-agent system. We
define agents to control specific properties of a given set of
proteins. These properties determine the dynamics of the
system, such as the ability for proteins to join or split apart,
while additional properties determine the aggregation’s fit-
ness as a viable primitive cell. We show that over a wide
range of starting conditions, there are mechanisms that al-
low protein aggregations to achieve high values of overall
fitness. In addition through the use of agent-specific utili-
ties that remain aligned with the overall global utility, we are
able to reach these conclusions with 50 times fewer learning
steps.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance

Keywords
Multiagent Systems, Non-genomic Evolution, Reinforcement
Learning

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06,May 8-12, 2006, Hakadate, Japan.
Copyright 2006 ACM 1-59593-094-9/05/0007 ...$5.00.

In this paper we show how multi-agent systems can make
an important contribution to the field of astrobiology - the
study of primitive ecosystems that occurred early in Earth’s
history and may be present of other planets. We focus on
the subfield of “non-genomic evolution,” involving the evo-
lution of protein ecologies that do not contain nucleic acids
(DNA and RNA) which form the basis of modern evolution.
Protein ecologies are important since simple proteins are
easier to make through natural processes than nucleic acids
and it is thought that life on Earth might have started with
these ecologies. The significant feature of protein ecologies is
that unlike nucleic acids, proteins cannot directly replicate
themselves. As a result, non-genomic evolution is concerned
with the global behavior of the entire protein ecology and its
ability as a whole to form new protein ecologies. It is there-
fore a good domain to use multi-agent systems to model the
interactions between proteins and the emergence of specific
protein ecologies.

The study of non-genomic evolution seeks to find the ini-
tial conditions and mechanisms that must be present to form
self-sustaining protein ecologies [6]. Unfortunately with cur-
rent knowledge it is impossible to directly simulate the evo-
lution of a protein ecology. Direct evolution of low-level
chemical processes has limited promise, because of the com-
putational difficulties in creating a simulation that would
encompass a full planetary ecology. In principle, feasible
simulations can be obtained by modeling the higher level
dynamics of protein interactions that map a protein’s chem-
ical structure (amino-acid sequences) to probability distri-
butions over possible functions. However, because at present
few of these mappings are known, a meaningful simulation
at this level is not possible. As a consequence non-genomic
evolution is currently analyzed using “plausible” models for
the dynamics of the protein ecology [4, 5]. These simpli-
fied dynamical models are then run and are evaluated based
on a global utility function. This global utility abstractly
measures the value of the resulting protein ecology. Unfor-
tunately creating a model that leads to a good final ecology
is laborious and extremely time comsuming.

This paper shows how learning agents can be used to im-
prove this modeling process by having agents automatically
learn parameters of protein ecology models that lead to high
global fitness, allowing more complex and meaningful mod-
els than the ones currently used in the astrobiological com-
munity. In this approach agents choose properties of indi-
vidual proteins that affect the dynamics of the system (such
as a proteins ability to split other proteins) as well as protein

properties that are important in producing a viable ecology,
such as the ability of an ecology to produce lipids needed
for a cell membrane. In a continuous process, agents choose
protein properties while the distribution and number of pro-
teins is being updated through the dynamics of the ecology.
Using reinforcement learning, the agents attempt to make
choices that lead to high global fitness, determined by a
given utility function evaluating the ecology’s viability. In
our experiments the mapping between the proteins’ proper-
ties and the ecology’s global utility is more complex, indirect
and realistic than in the models previously used in the as-
trobiological community. As a consequence ecologies that
are able to achieve high fitness provide a better example of
mechanisms that can lead to self-sustaining protein ecolo-
gies.

Section 2 describes the underlying principles and previ-
ous work associated with non-genomic evolution. Section 3
mathematically describes the model used in this paper sim-
ulating the dynamics and evaluating ecologies of proteins.
Section 4 shows how learning agents are used to optimize the
properties of the proteins so that the entire system achieves
high global fitness. Section 5.1 presents results from simula-
tions of the system showing that ecologies with high global
fitness can be found quickly. Section 6 then discusses the
significance of these results to the field of astrobioligy, and
provides future directions in which multi-agent systems can
be used to benefit this study.

2. BACKGROUND AND PREVIOUS WORK
All current life is based on organisms replicating through

information coded in their DNA (Deoxyribonucleic acid) or
RNA (Ribonucleic acid). DNA and RNA are composed of
sequences of nucleic acids, which can form base-pairs allow-
ing replication of the sequence. Due to their ability to repli-
cate, models of the origins of life based on DNA or RNA are
the most popular models [3]. However, DNA and/or RNA
based models have many difficulties [6]. Current organisms
require a complex interaction between DNA and RNA to
survive. Even hypothetical organisms based only on RNA
(“RNA worlds”) require complicated interactions between
different types of RNA [2, 3]. In addition, the nucleic acid
sequences which form DNA and RNA are difficult to make
under the pre-biotic conditions that existed early in Earth’s
history.

Therefore, there is a growing interest in non-genomic evo-
lution - the study of organisms that do not use nucleic acids.
Instead of using nucleic acids, these organisms use only pro-
teins. The non-genomic evolutionary model of primitive or-
ganisms has the advantage that the proteins are made of se-
quences of amino-acids, which have been shown to be made
under conditions similar to those that existed in Earth’s
early history. However, since amino-acids cannot form base-
pairs, unlike nucleic acids, proteins cannot be directly repli-
cated (Figure 1). Therefore the field of non-genomic evolu-
tion focuses on global properties of protein ecologies to see
if protocells (precursors to cells which have some properties
of cells such as having a membrane, but do not have all
cell functions or cell components) formed from these ecolo-
gies can produce new protocells [2, 6]. Understanding the
combined behavior of the ecology is paramount in order to
ascertain the potential place of nongenetic evolution in the
history of life on Earth.

While recent laboratory and computation progress has

Figure 1: Replication of Proteins. DNA and RNA
can form base pairs and directly replicate their se-
quences. Proteins cannot form base pairs and there-
fore cannot directly replicate themselves. However
as a system, a group of proteins forming a protocell
may be able to replicate by creating other protocells
with approximately the same characteristics.

been made in understanding self-replicating protein ecolo-
gies, we are still far from being able to precisely model the
evolution of a protocell based on its constituent proteins [4,
5, 7, 8, 11]. As a result current models are greatly simpli-
fied, using high-level assumption about the dynamics of the
system [6]. One of the few models for non-genomic evolu-
tion is described in New and Pohorille [6] and is based on
the relationship between the length of the protein and its
efficiency - the percentage of time it succeeds in perform-
ing operations on other proteins. In this model, proteins
perform two operations: hydrolysis and ligation. Hydrolysis
is the process of decomposing a protein, whereas ligation is
the process of building a new protein by joining two pro-
teins. In this model the efficiency of ligation and hydrolysis
are based on Gaussians, with longer proteins generally be-
ing more efficient. The fitness evaluation of the protocell in
this model is based on protein length with longer proteins
being evaluated higher than proteins with shorter length.
The computational experiments performed with this model
show that protocells become more fit with time. However,
in this model the fitness evaluation is only concerned with
the efficiency of two functions while numerous other prop-
erties are required for a viable protocell, such as a protein’s
ability to produce cell-membrane building lipids.

In this paper we will expand on these results and develop a
more complex model of non-genomic evolution with the help
of a multi-agent system. This setup differs from previous
ones in that efficiencies that the proteins attain at certain
tasks is determined by the actions of learning agents, allow-
ing many more degrees of freedom in the dynamics of the
evolution. In addition the proteins have more functions be-
sides their ability to break and build other proteins. Finally
the global utility used in evaluating the fitness of the pro-
tocell takes into account the distribution of all the protein
functions in the protocell.

3. THE PROTOCELL MODEL
The model of the primitive protocell used in this paper is

based on different protein types performing different tasks
within the protocell and contributing differently to the fit-
ness of the protocell. In this model a protocell has a set of
proteins of various types. The two most important types
of proteins are combiner and breaker proteins. Combiner
proteins take two other proteins and combine them into a
single protein (ligation). Breaker proteins take a single other
protein and break them into two separate proteins (hydrol-
ysis). Other protein types have important functions such as
lipid production for cell walls, energy production and energy
transport. However in our model, these other proteins do
not actively contribute to the dynamics of the system and
are only important in evaluating the final viability of the
protocell as defined by the system’s global utility.

3.1 Global Utility
For a protocell to survive and thrive, it needs different

types of proteins performing different tasks. Certain types
of proteins are needed for building cell membranes, while
others are needed for tasks such as energy production, en-
ergy transportation and chemical exchange. If a cell has a
poor distribution of proteins, such as having no proteins for
building cell membranes, it will be unlikely to survive and
should receive a poor utility. Our model makes an abstrac-
tion over the different types of possible proteins, ignoring
their low-level functions. We only assume that there are
optimal numbers of each type of protein and we use an ex-
ponential decay to assign utility to off-optimal distributions.

To formally define the global utility of a protocell, let
there be k possible types of proteins and let yi be the de-
sired amount of proteins of type i in the system, while xi

represents the current amount of proteins of type i present

in the system. We choose the functional form xie
− xi

yi , which
takes its optimal value of 1 when xi = yi, to describe how
close we are to the desired number of proteins performing
function k. The intuition behind this choice is that there is
an optimal amount of a particular protein needed in the pro-
tocell. If there is less than that amount, the protocell would
not function properly, and if there is more than that amount,
the protein uses more resources than needed to perform its
task.

The global utility for the protocell is simply the sum of
these functions:

G(x, y) =

kX
i=1

xie
− xi

yi , (1)

where x is the vector of the current amounts of each protein
type and y is the vector of desired amounts of each protein
type.

3.2 Protocell Dynamics
The dynamics of the protocell are determined by hydroly-

sis and ligation. During ligation, a “combiner protein” joins
two proteins into a single protein. During hydrolysis, on the
other hand, a protein is broken into two proteins. There are
two crucial issues in both operations. First, the combiner
or breaker protein has to choose the proteins on which it
will act. Second the protein(s) resulting from the operation
need(s) to inherit certain properties of their predecessors.
These issues will be modeled through concepts of specializa-

tion and clustering respectively.
Based on current theory of non-genomic evolution, it is

unlikely that combiner proteins in early protocells were spe-
cialized, i.e. they will combine two other proteins together
regardless of what type they are [6]. However, it is likely
that breaker proteins were somewhat specialized: There are
some types of proteins which a particular breaker protein
will not break. While the actual specialization dynamics are
complex, we will model this specialization by assigning each
breaker protein a single type of protein which it will never
break. All other proteins will be broken by that protein.

When new proteins are created as a result of combining
or breaking operations, they will be assigned types based
on the proteins they came from. This assignment will be
modeled through the principle of “protein type clusters.”
In this model we assume that proteins of the same type
tend to congregate near each other, forming clusters. In our
model each protein belongs to exactly one cluster, though
multiple clusters may have proteins of similar types (Figure
2). When a new protein is created as a result of a breaking
operation it will tend to go to a cluster of the same type as
its parent (though not necessarily the same cluster). When
a new protein is created based on combing two proteins, it
will go to a cluster chosen based on the properties of the
parent clusters. Details of these assignments are given in
Section 4.

Figure 2: Type Agents. Each type agent determines
the protein types in its cluster. Each agent makes
decisions about the type of protein in its cluster
independently, so proteins in the same cluster can
have different types.

4. AGENT FRAMEWORK FOR PROTEIN
MODEL

In this paper, agents play an important role in determin-
ing the specialization of the breaker proteins and determin-
ing the properties of the clusters. Specifically, each cluster
will be assigned a “type” agent, whose actions determine the
type of each protein in its cluster. Also each specialization

of a breaker protein will be determined by the actions of a
“breaker-specialization” agents. This section describes the
details of the learning process and the actions taken by the
agents.

4.1 Type Agents
The types of the proteins in a cluster are determined by

an agent assigned to that cluster. In our model an agent
takes a discrete action ranging from 1 to k, where k is the
number of possible types. Every time an agent takes an
action, its action determines the type of a single protein in
its cluster chosen at random. Over time, an agent takes
many actions, defining the types of more and more proteins
within the cluster. The goal of the agent is to choose types
that ultimately lead to a protocell of high global utility.
To accomplish this task, our agents learn through a simple
reinforcement learning.

The system is modeled using a series of discrete time steps,
where each agent takes an action after each time step. At
the beginning of a time step each type agent takes an action
determining the type of single protein in its cluster. This
action is determined by an ε-greedy reinforcement learner
with a learning table of size k, the number of protein types.
Each entry in the table represents the agents expected utility
when choosing the action associated with that entry. With
probability 1 − ε an agent takes an action associated with
the highest table entry. With probability ε it takes a ran-
dom action. Note that with the ε-greedy learner, we would
expect a cluster to have proteins of several different types.
Most of the time the agent would set proteins to the type
associated with highest expected utility, though sometimes
it will choose random types with frequency depending on ε.

If an agent sets the protein type to something other than a
combiner protein or a breaker protein, then nothing happens
in the system until the next time step. However, if an agent
chooses a protein to be a combiner or a breaker protein, the
corresponding combining or breaking operations then take
place. If the protein is a combiner, then two other proteins
are chosen at random and combined together to form a new
protein. If the protein is a breaker protein, then another
protein is chosen at random for possible breaking. Whether
this protein is actually broken depends on the specialization
of the breaker protein, discussed next.

4.2 Breaker-Specialization Agents
Each protocell has several breaker-specialization agents

associated with the proteins. A breaker-specialization agent
will typically be associated with several proteins, but a pro-
tein will only be associated with one breaker-specialization
agent. The actions of its breaker-specialization agent deter-
mine the specialization of any breaker proteins that are asso-
ciated with it. At each time step, the breaker-specialization
agent takes one of k actions chosen with an ε-greedy rein-
forcement learner. This action then defines the specializa-
tion of a breaker protein chosen randomly. This special-
ization determines the type of protein the breaker protein
cannot break: If the protein it operates on during its break-
ing operation is of the same type as its specialization, then
the operation does nothing.

4.3 Cluster Assignment of New Proteins
After a combining or breaking operation, the cluster that

the new protein belongs to is determined by the clusters

of the original proteins involved in the operation. In our
model we want the child protein(s) that result from these
operations to end up in cluster(s) that are “similar” to the
cluster(s) the parent protein(s) came from. While there are
many ways to define the similarity between clusters, our
model will use the learning tables for the agents assigned to
each cluster to define similarity (Figure 3). For a breaking
operation, a protein p in cluster c is broken into two new
proteins. To find the cluster cnew for one of the new proteins
pnew, we first compute a vector, v as follows:

v = Qc + e , (2)

where Qc is the learning table of the type agent associated
with cluster c, and e is Gaussian noise. The cluster for the
new protein, cnew is then chosen as the cluster associated
with the agent that has the closest learning table to v, based
on the Manhattan Norm (1-norm):

cnew = argmincδ(Qc, v) , (3)

where δ(·) is the Manhattan Norm.

1 1

3

P r o t e i n B r e a k i n g

1 1
1 2

Figure 3: Breaking Proteins Apart. When a pro-
tein is broken apart, two child proteins are created.
The types of each of the child proteins depend on
the learning table of the agent for the cluster the
original protein came from. For each child protein
a new table is made by adding noise to this learn-
ing table. Each child protein is assigned to the the
cluster whose agent has the learning table is closest
to the proteins table.

For a combining operation a protein p1 in cluster c1 is
combined with protein p2 in cluster c2 to form a single new
protein, pnew. As with the breaking operation, to find the
cluster cnew for the new protein we first compute a vector,
v. However this time v is a function of two learning tables
since pnew is created from two proteins. To handle this
we combine the learning tables using the element-wise max
operator m(x, y), which assigns to each component of mi

the maximum of xi or yi: mi = max(xi, yi). The vector v
can then be computed as:

v = m(Qc1 , Qc2) + e , (4)

where Qc1 and Qc2 are the learning tables of the type agents
associated with clusters c1 and c2, and e is Gaussian noise.

As before the cluster for the new protein, cnew is then chosen
as the cluster associated with the agent that has the closest
learning table to v, based on the Manhattan Norm (1-norm):

cnew = argmincδ(Qc, v) , (5)

where δ(·) is the Manhattan Norm. The process for de-
termining the breaker-specialization agent associated with
a new protein is parallel, with the learning tables of the
breaker-specialization agents being used.

4.4 Agent Utilities
The goal of the agents is to maximize the global utility

G(x, y) as defined in Equation 1. However when there are
many agents, it is difficult to maximize this utility. This
difficulty arises from the fact that a single agent will only
have a small impact on the value of G. If an agent takes
an action and G increases, that agent does not know if the
increases were due to its action or the actions of the other
agents. When agents do not have significant influence over
their utility as compared to the influence of all the other
agents, it usually takes a very long time for them to learn
to take actions that maximize it.

To alleviate this problem, this paper has each agent max-
imize a “difference utility” instead of the global utility. A
difference utility is specific to an agents i, and can be com-
puted as follows:

Di(z) = G(z) − G(z−i) , (6)

where z is a vector of all the actions taken by all the agents
and z−i is a vector of all the actions except for the action
taken by agent i. The second term of the difference equation
is a counterfactual version of the global utility that can be
seen as the value of the system without agent i. Therefore
the difference utility can be seen as the agent’s net con-
tribution to the system. By subtracting this counterfactual
second term from first term, the difference equation removes
much of the noise caused by the actions of the other agents.
The difference utility has been shown to greatly speed up
reinforcement learning in many domains, including internet
traffic routing, multi-robotic control and satellite communi-
cation [9, 10, 1].

The specific form of the difference utility for our global
utility, G(x, y), defined in this paper is:

Di(x, y) = G(x, y) − G(x−i, y) , (7)

where x−i represents the counts of the protein types for a
protocell, had agent i had not taken any action. The exact
form of x−i depends on the type of action made, especially
if the agent made a protein a combiner or a breaker. For all
actions let j be the type of protein chosen by the agent. For
combiner actions let a and b be the types of proteins that
were combined and let c be the type of protein produced.
For breaker actions let a be the type of protein broken and
let b and c be the types of proteins produced. Then the
value of x−i is as follows:

1. x − ej for non-combiner or breaker proteins ,

2. x − ej + ea + eb − ec for combiner proteins ,

3. x − ej + ea − eb − ec for breaker proteins ,

where ej is a vector where element j has a value of 1 and the
other elements are 0. Essentially for combiner and breaker

proteins, the proteins created are removed from the counts
and the proteins consumed are returned.

5. RESULTS
To test the ability of our agent-based system to produce

effective models, we ran a number of experiments where
agents had to create models that led to protocells with high
utility starting with different protein distributions. In this
task as agents had to create a model with the proper distri-
bution of combiner and breaker proteins, and had to ensure
that the breaker proteins had the proper selectivity profile.
In addition agents had to ensure that the functions of all
the proteins were in the proper distribution.

In all the experiments there were thirty agents. In each ex-
periment there were five different types of proteins that were
desired in the final outcome besides combiner and breaker
proteins (e.g., proteins for energy collection, energy trans-
port, membrane building, and nucleus building). The exper-
iment tested different starting conditions, different desirable
combinations of these proteins by selecting an optimal num-
ber of each these five proteins, y1, y2, y3, y4, y5, along with a
corresponding optimal total y = y1 + y2 + y3 + y4 + y5, and
changing optimal conditions.

• The first experiment tested the ability of the agents to
create a model that reached a good final equilibrium,
starting from y proteins. The intent of this experiment
was to determine whether the desired combination of
proteins can be reached by rearranging the proteins
present at the start.

• The second experiment tested this ability starting from
2 proteins. The intent of this experiment was to de-
termine how few proteins are needed for the process
to start, and whether a protocell can develop start-
ing from just two proteins and generate the necessary
proteins to perform all the required tasks.

• The third experiment tested this ability starting with
3y proteins. The intent of this experiment was to test
whether the protocell can cut through clutter and elim-
inate unnecessary proteins.

• The fourth experiment tested the ability of the proto-
cell to adapt to a sudden change in environment where
the optimal number of each type of protein is changed
halfway through the simulation. The intent of this ex-
periment was to see the robustness of the protocell to
sudden changes in its environment.

5.1 Protocell Evolution from y Proteins
In the first experiment the protocell started with 30 pro-

teins. The optimal number of proteins was 31 (1+2+4+8+
16), with y1 = 1, y2 = 2, y3 = 4, y4 = 8, and y5 = 16. Since
the starting and optimal number of proteins was almost the
same, this problem was relatively simple and the only task of
the agents was to create a model that forms the proper dis-
tribution and maintains it. However, despite the simplicity
of the task, Figure 4 shows that agents directly maximizing
the global utility could not produce an adequate model. In
fact the initial actions of the agents produced a model that
was worse than the starting one, and after 5000 learning tri-
als they still did not manage to reach their initial starting
performance. This result is not surprising since many choice

of model parameters can be very destructive, such as creat-
ing too many breaker proteins. Since it was very difficult for
the agents to learn from the global utility, they had difficulty
avoiding these destructive choices. In contrast, agents using
the difference utility were able to produce adequate models
for this task. By changing the distribution they were able
to create a model that achieved a utility of 3.7, up from the
initial utility of 2.8. The agents using the difference utility
were more effective than the agents using the global utility
because the difference utility was much more learnable. The
significance of this model to non-genomic evolution, how-
ever is minimal. It shows that the proper distribution can
be maintained, intuitively meaning that there should be few
combiner and breaker proteins.

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0 1000 2000 3000 4000 5000

G
lo

ba
l U

til
ity

 A
ch

ie
ve

d

Time

D
G

Figure 4: Performance for protocell starting with
near optimal number of proteins. Agents using dif-
ference utility form adequate model by changing
protein distributions to fit targets. Global utility
cannot reach original (random) performance.

5.2 Protocell Evolution from 2 Proteins
In the second experiment, the protocell started with 2

proteins. The optimal number of proteins was 31, with y1 =
1, y2 = 2, y3 = 4, y4 = 8, and y5 = 16. This presented
a much more difficult setting than the previous one, since
starting with 2 proteins, the agents had to create a model
that increases the number of proteins by a factor of 15, while
providing that the proteins are in the proper distribution.
This requires an initial increase in the distribution of breaker
proteins to create enough total proteins and a shift in the
distribution, as well, to maintain the proper protein levels.
Figure 5 shows that agents using the difference utility are
able to create a model that leads to highly fit protocells. In
this experiment, the performance of the protecell goes from
0.8 to 3.5, a significantly larger increase than in the previous
experiment. This larger increase is expected since the initial
protocell with two proteins is in a much worse state than the
one starting with 30. This experiment shows that a model
exists where a protocell with a small number of proteins can
grow to one with a large number of proteins and form the
proper protein distribution. This has significant insight into
the required initial conditions for the formation of protocells.
This result demonstrates that with the proper conditions a
protein ecology can be formed starting from only 2 proteins.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

G
lo

ba
l U

til
ity

 A
ch

ie
ve

d

Time

D
G

Figure 5: Performance for protocell starting with 2
proteins. Agents using difference utility are able to
form model where combiner and breaker proteins
are formed, and lead protocell to an equilibrium
where there are enough proteins, and the proteins
are in the correct distribution.

5.3 Protocell Evolution from 3y Proteins
In the third experiment the protocell started with 95 pro-

teins. The optimal number of proteins was again 31, with
y1 = 1, y2 = 2, y3 = 4, y4 = 8, and y5 = 16. This experiment
requires an initial increase in the distribution of combiner
proteins so that proteins in the initial high population are
combined together to form a smaller population. As before
results show that agents using the difference utility are able
to create a model that leads to highly fit protocells. In this
experiment the performance of the protocell quickly shoots
from 2.2 to 3.6, but then goes down slightly. This slight
reduction in utility is due to the model producing too many
combiner proteins that causes the system to overshoot its
protein reduction. Figure 6 shows that when there are too
many proteins in a protocell, a mechanism can be created to
reduce the number and create a proper protein distribution.

5.4 Protocell Evolution in Dynamic Environ-
ments

In the final experiment, the protocell started with 35 pro-
teins with an optimal number of proteins of 31. The opti-
mal number of proteins was thirty one, with y1 = 1, y2 =
2, y3 = 4, y4 = 8, y5 = 16, but at 5000 episodes is changed to
y1 = 16, y2 = 8, y3 = 4, y4 = 2, and y5 = 1. This experiment
requires the agents to adapt to new model requirements after
they have already developed an existing model. The results
shown in Figure 7 show that the agents are able to quickly
adapt to this change in model requirements.

6. DISCUSSION AND CONCLUSION
In this paper we explore multi-agent models to simulate

potential ways in which early non-genomic cells can evolve
to perform the tasks required for survival. Through the use
of learning agents, we create an abstract dynamical model

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0 1000 2000 3000 4000 5000

G
lo

ba
l U

til
ity

 A
ch

ie
ve

d

Time

D
G

Figure 6: Performance for protocell starting with
three times too many proteins. Agents using differ-
ence utility are able to form model where combiner
and breaker proteins are formed that lead protocell
to an equilibrium where there are enough proteins,
and the proteins are in the correct distribution.

for a primitive protocell of considerably greater complex-
ity than previous models. In particular our models include
proteins that had many different properties and had more
complex dynamics for protein combining and breaking. In
addition, while the fitness utility used in other models di-
rectly reflects the dynamics of the system, such as efficiency,
our fitness utility is only indirectly influenced by the dy-
namics. Therefore our fitness utility is more realistic and
provides many more degrees of freedom for the system to
evolve. With our framework, we show that models exists
that can produce highly fit protocells from a wide variety of
starting conditions.

While our use of multi-agent systems allow us to create
models of non-genomic evolution that are more complex
than previous models, they are still highly abstract. One
issue with the model is that only combiner and breaker pro-
teins affect the dynamics of the system. We are currently
working with astrobiologists to help add other dynamics into
the framework. Another issue is that the optimal protein
distributions used in our global utility of the protocell are
somewhat arbitrary. However our framework allows other
distributions to be plugged in, and we are also working with
astrobiologists to come up with more realistic values.

Even though many details need to be added to our mod-
els to increase their biological plausibility, the multi-agent
framework provides the power and flexibility to do so and
naturally matches the distributed properties of protein-only
ecologies. In general more complex evaluation of protocells
can simply be implemented through the agent utilities. In
addition more complexity can be introduced by adding dif-
ferent types of agents or changing the agents action space.
Due to their flexibility we believe that multi-agent systems
will become an important tool the study of astrobiology.

Acknowledgments: The authors thank Dr. Andrew Po-
horille, Astrobiology branch, NASA Ames Research Center,
for invaluable discussions and for patiently describing the
intricacies of the “protein world” models of early life.

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000

G
lo

ba
l U

til
ity

 A
ch

ie
ve

d

Time

D
G

Figure 7: Model Formation for Changing Distribu-
tion. When requirements for the distribution of pro-
teins changes at time step five thousand, agents are
able to form a model that adjust to change.

7. REFERENCES
[1] A. Agogino and K. Tumer. Efficient evaluation

functions for multi-rover systems. In The Genetic and
Evolutionary Computation Conference, pages 1–12,
Seatle, WA, June 2004.

[2] A.J. Hager, J.D. Pollard, and J.W. Szostak.
Ribozymes: Aiming at RNA replication and peptide
synthesis. Chemistry and Biology, 3:717–725, 1996.

[3] G.F. Joyce. Ribozymes - building the RNA world.
Current Biology, 6:965–967, 1996.

[4] D.H. Lee, J.R. Granja, J.A. Martinez, K. Severin, and
M.R. Ghadiri. A self-replicating peptide. Nature,
382:525–528, 1996.

[5] D.H. Lee, K. Severin Y. Yokobayashi, and M.R.
Ghadiri. Emergence of symbiosis in peptide
self-replication through a hypercyclic network. Nature,
390:591–594, 1997.

[6] M. H. New and Andrew Pohorille. An inherited
efficiencies model of non-genomic evolution.
Simulation Theory and Practice, 8:199–208, 2000.

[7] R.W. Roberts and J.W. Szostak. RNA-peptide fusions
for the in vitro selection of peptides and proteins. In
Proceedings of the National Academy of Science USA,
pages 12297–12302, 1997.

[8] K. Severin, D.H. Lee, J.A. Martinez, M. Vieth, and
M.R. Ghadiri. Dynamic error correction in
autocatalytic peptide networks. Angewandte Chemie
International Edition, 37:126–128, 1998.

[9] K. Tumer and D. Wolpert, editors. Collectives and the
Design of Complex Systems. Springer, New York,
2004.

[10] D. H. Wolpert and K. Tumer. Optimal payoff
functions for members of collectives. Advances in
Complex Systems, 4(2/3):265–279, 2001.

[11] S. Yao, I. Ghosh, R. Zutshi, and J. Chmielewski.
Selective amplification by auto and cross-catalysis in a
replicating peptide system. Naturre, 396:447–450,
1998.

